Question 5

Let *V* and *W* be finite dimensional vector spaces and $f: V \to W$ be a linear transformation with kernel of *f* is the set $Ker(f) = \{v | f(v) = 0\}$. Prove *f* is one to one if and only if $Ker(f) = \{0\}$. **(10 marks)**

Solution:

Let $f \in L(V,W)$.
Assume $K \operatorname{er}(f) = \{0\}$.
$f(v_1) = f(v_2) \triangleright f(v_1) - f(v_2) = 0$
$\triangleright f(v_1 - v_2) = 0$ since <i>f</i> is linear
$\triangleright v_1 - v_2 \hat{\mid} Ker(f)$
But then $K \operatorname{er}(f) = \{0\}$ by assumption,
thus $v_1 - v_2 = 0$
$\triangleright v_1 = v_2$
$\therefore f$ is one to one
(\Rightarrow)
Assume f is $1 - 1$.
Look, $f(0) = f(w + (-w)) = f(w) - f(w) = 0.$
Now if $w \in Ker(f)$, therefore $f(w) = 0 = f(0)$
f is $1 - 1$ by assumption, $\therefore w = 0$. Thus $Ker(f) = \{0\}$ since w
is arbitrary. ■